Optical Interconnects – System on a Chip by Saurabh Kumar SignUp
Boloji.com
Boloji
Home Kabir Poetry Blogs BoloKids Writers Contribute Search Contact Site Map Advertise RSS Login Register
Boloji
Channels

In Focus

Analysis
Cartoons
Education
Environment
Going Inner
Opinion
Photo Essays

Columns

A Bystander's Diary
Business
My Word
PlainSpeak
Random Thoughts

Our Heritage

Architecture
Astrology
Ayurveda
Buddhism
Cinema
Culture
Dances
Festivals
Hinduism
History
People
Places
Sikhism
Spirituality
Vastu
Vithika

Society & Lifestyle

Family Matters
Health
Parenting
Perspective
Recipes
Society
Teens
Women

Creative Writings

Book Reviews
Ghalib's Corner
Humor
Individuality
Literary Shelf
Love Letters
Memoirs
Musings
Quotes
Ramblings
Stories
Travelogues
Workshop

Computing

CC++
Computing Articles
Flash
Internet Security
Java
Linux
Networking
Computing Articles Share This Page
Optical Interconnects – System on a Chip
by Saurabh Kumar Bookmark and Share
 
The need to obtain faster processor has resulted in larger number of gates on the chip die. We tend to see larger processors as more efficient methods of integrating larger number of transistors. But due to interconnect bottleneck there would be a certain upper limit to which we could go.

Metallic interconnects on chip are typically associated with high time constants and add to the overheads when it comes to optimizing for high clock speeds. With increasing component density on chip there would even be a need to have faster interconnect between the devices to still enable single clock operation on the chip.

Optical Interconnects have the natural advantage of high bandwidth, high interconnection density and superior performance overall as an interconnection system. Most of all realized interconnection architecture using optical components facilitates parallel processing. 

A typical component of an interconnect could be a switch that operates at Giga Hertz ranges and comprises of a Surface emitting Laser (VCSEL) that is powered by a driver designed using CMOS/BiCMOS technology. The Laser lases through a micro lens and reaches a particular detector which is envisaged as a part of the receiver that is designed with similar technology as the driver. The receiver comprises of Flip Chip Bondable photo detectors and transimpedance amplifiers. Use of Flip Chip interconnection lowers propagation delay and also increases interconnection density.

Proper simulation and design of the optical micrograting can facilitate various connection strategies for the hybrid optoelectronic configuration. One of the primary solution to design would be to implement a GPIB (General purpose Interface Bus). The grating can be designed to create a one to 'n' fanout and these fanouts can be sensed using detectors.

High density parallel processing could be facilitated since the laser beams can crossover without interfering. Potential application for optical switches could be in network systems that require giga-hertz switching speeds and re-configurability. Potential application may lie in integrating these Opto-MCMs in fiber optic repeater units for short/long haul communications.
15-Apr-2001
More by :  Saurabh Kumar
 
Views: 1628
 
Top | Computing Articles







A Bystander's Diary Analysis Architecture Astrology Ayurveda Book Reviews
Buddhism Business Cartoons CC++ Cinema Computing Articles
Culture Dances Education Environment Family Matters Festivals
Flash Ghalib's Corner Going Inner Health Hinduism History
Humor Individuality Internet Security Java Linux Literary Shelf
Love Letters Memoirs Musings My Word Networking Opinion
Parenting People Perspective Photo Essays Places PlainSpeak
Quotes Ramblings Random Thoughts Recipes Sikhism Society
Spirituality Stories Teens Travelogues Vastu Vithika
Women Workshop
RSS Feed RSS Feed Home | Privacy Policy | Disclaimer | Site Map
No part of this Internet site may be reproduced without prior written permission of the copyright holder.
Developed and Programmed by ekant solutions